
Evaluation of Centroidal Voronoi Tessellation
as a Statistical Sampling Method*

Vicente J. Romero

Sandia National Laboratories†

Albuquerque, NM

John V. Burkardt, Max D. Gunzburger◊, Janet S. Peterson

School of Computational Science and Information Technology

Florida State University, Tallahassee, FL
Note to SAMO ‘04 Selection Committee: the following
is a draft paper still under development which is as yet
incomplete. If this submission is accepted for the
conference this draft will be expanded into a full paper
reflecting the scope of the title above and abstract below.

Abstract

A recently developed Centroidal Voronoi Tessellation
(CVT) unstructured sampling method is investigated here
to assess its suitability for use in statistical sampling. CVT
efficiently generates a highly uniform distribution of sam-
ple points over arbitrarily shaped M-Dimensional param-
eter spaces. It has recently been shown on several 2-D test
problems to provide desirable point distributions for func-
tion integration, statistical estimation, and for generating
locally conforming response surfaces. In this paper, its
performance as a statistical sampling method is further
compared to that of Latin-Hypercube Sampling (LHS) and
Simple Random Sampling (SRS) Monte Carlo methods,
and Halton and Hammersley quasi-Monte-Carlo sequence
methods. Sampling efficiencies are compared for resolving
various statistics of response in a 2-D test problem. It is
found that on balance CVT performs best of all these sam-
pling methods on our test problems.

1. Background

For reasons that will become clear later, it is often ben-
eficial in statistical sampling and function integration to
sample "uniformly" over the applicable parameter space.

Such uniformity, while conceptually simple and intui-
tive on a qualitative level, is on a quantitative level some-
what complicated to describe and quantify mathematical-
ly. Quantitative aspects of uniformity involve: 1) the equal-
ity with which points are spaced relative to one another in
the parameter space (are they all nominally the same dis-
tance from one another?); 2) uniformity of point density
over the entire domain of the parameter space (i.e., uni-
form "coverage" of the whole domain by the set of points,
and not just good uniformity within certain regions of the
space); and 3) isotropy in the point placement pattern.
Each of these aspects of uniformity can be quantified by
several mathematical measures. We will not discuss these
measures further here, but we mention them to say that
quantitative measures do exist for the intuitive notion of
uniformity. We find that in 2-D the visual-intuitive sense of
uniformity obtained by viewing a distribution of samples
in a square (2-D hypercube) correlates very strongly with
the quantitative quality measures mentioned above. Thus,
in 2-D the eye is an excellent integrator of the different as-
pects of uniformity listed above, and a very accurate dis-
criminator of uniformity or lack thereof –or at least in
judging whether one particular layout of sample points is
more uniform than another.

Much effort has been applied in the literature to the
problem of achieving uniform placement of N samples
over M-dimensional hypercubes, where M and N are both
arbitrary. It is well recognized that Simple-Random sam-
pling (SRS) Monte Carlo does not do a particularly good
job of uniformly spreading out the sample points. The pop-
ular Latin Hypercube Sampling (LHS) method generally
does a much better job of uniformly spreading out the
points. This is due to the greater sampling regularity over
each individual parameter dimension before the individu-
ally generated parameter values are randomly combined
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into parameter sets which define the coordinates of the
sampling points ([5]).

Recent efforts to modify LHS to get an even more uni-
form distribution of points over the paramter space have
included Distributed Hypercube Sampling (DHS, [12])
and Improved Distributed Hypercube Sampling (IHS, [2]).
The fundamentals and history of these are reviewed in
[18]. Though the quantitative measure of uniformity used
for comparisons in [2] and [12] was somewhat flawed, it
does appear that DHS gives better sampling uniformity
than LHS, and that IHS gives better sampling uniformity
than DHS but is increasingly more computationally expen-
sive as the dimensionality of the paramter space increases.
We have recently become aware of another LHS variant,
“Optimal Symmetric LHS” (OSLHS, [21]) which also
seems to improve the spatial uniformity of LHS samples.
Its computational cost and performance relative to DHS
and IHS are not yet known, however.

A number of other potential approaches for achieving
uniform point placement that are not evolved from an LHS
basis are reviewed (and some new ones are presented) in
[7]. There, some quantitative metrics related to visual/sen-
sory perception of point uniformity in 2-D are reviewed
and some new ones presented. Many of these non-LHS-
based approaches appear to work very well in 2-D, but it is
said that some of the methods may not be applicable or
may not perform well in more than two dimensions, and
some clearly will not scale up to high dimensions afford-
ably. Others seem more promising for high dimensions,
but have not yet been investigated enough.

The so-called “Quasi- Monte Carlo” (QMC) quasi- or
sub- random low-discrepency sequence methods (see e.g.
[14]) can often achieve reasonably uniform sample place-
ment in hypercubes. The strength of these sequence meth-
ods (Halton, Hammersley, Sobol, etc.), is that they can pro-
duce fairly uniform point distributions even though sam-
ples are added one at a time to the parameter space. The
one-at-a-time incremental sampling of QMC (and SRS)
enables these methods to have better efficiency prospects
than CVT and LHS-type methods in the area of error esti-
mation and control. Not only this, the results achieved are
often quite good. For resolving the mean and standard de-
viation of response measures, Hammersley sequences
were found in [11] to converge to within 1% of exact re-
sults 3 to 100 times faster than LHS over a large range of
test problems. For resolving response probabilities, Ham-
mersley and modified-Halton were found in [15] to per-
form roughly the same as LHS on balance over several test
problems.

However, when the hyperspace dimension becomes
moderate to large and/or the sampling density becomes
high, some (perhaps all?) sequences suffer from spurious

correlation of the samples. This is shown for standard Hal-
ton sequences in 16-D (ref. [12]) and 40-D (ref. [15]).
Sometimes a modification can be found to suppress or de-
lay the onset of spurious correlation, as a fix from the liter-
ature implemented in [15] shows for Halton sequences.

Recently, a long-recognized approach for achieving
uniformity of point placement in M-dimensional volumes,
called “Centroidal Voronoi Tessellation” (CVT), has been
made computationally efficient ([10]) for implementing
the principles of Centroidal Voronoi diagrams ([6],[13]).
These diagrams subdivide arbitrarily shaped domains in
arbitary-dimensional space into arbitrary numbers of near-
ly uniform subvolumes, or Voronoi cells/regions. Given a
set of N points {zi} (i=1,...,N) in an M-dimensional hyper-
cube, the Voronoi region or Voronoi cell Vj (j=1,...,N) cor-
responding to zj is defined to be all points in the hypercube
that are closer to zj than to any of the other zi’s. The set {Vi}
(i=1,...,N) is called a Voronoi tessellation or Voronoi dia-
gram of the hypercube, the set {zi} (i=1,...,N) being the
generating points or generators. A centroidal Voronoi tes-
sellation (CVT) is a special Voronoi tessellation with the
property that each generating point zi is itself the mass cen-
troid of the corresponding Voronoi region Vi.

Although CVTs are deterministic, they can be con-
verged to with probabilistic sampling methods. In [10],
new probabilistic CVT construction algorithms were intro-
duced, implemented, and tested. These methods are gener-
ally much more efficient than previous deterministic and
probabilistic methods for constructing CVTs.

The CVT concept and the algorithms in [10] for their
construction can be generalized in many ways (see [6] for
details). For example, instead of a hypercube, general re-
gions in M-dimensional space can be treated. This feature
has been exploited with great success (see [6]) for dis-
cretizing arbitrary 2-D and 3-D domain volumes for com-
putational mechanics analysis with meshless analogues of
finite element methods (e.g., [1]). Furthermore, points can
be distributed non-uniformly according to a prescribed
density function over the space. For instance, reference
[18] shows several CVT point sets spaced according to a
bi-Normal joint probability density function. Thus, CVT
can be used for Monte-Carlo-like sampling in problems
containing multiple random variables. In this regard, we
surmise that correlation structure for correlated random
variables can be introduced into CVT sampling with the
rank correlation procedure [8] employed in [9] for SRS
and LHS, and in [11] for Hammersley QMC.

Figure 1 compares three LHS and three corresponding
CVT pointsets for 100 samples in a 2D unit hypercube.
The three LHS pointsets were generated with [9] for dif-
ferent initial seeds (Seed1 = 123456789, Seed2 =
192837465, Seed3 = 987654321) and a Uniform joint



probability density function over a unit-hypercube param-
eter space. The three corresponding CVT pointsets were
generated ([3]) by using the LHS sets as initial conditions
(point locations) to begin the CVT iterations. In all cases
the CVT set is much more uniform (visually and quantita-
tively) than its associated LHS set. All three CVT sets are
relatively similar visually and quantitatively, even though
starting from three very different initial conditions given
by the LHS sets.

The LHS sets exhibit significant clustering and non-
uniformity of the points. The LHS sets do not appear to be
significantly more uniform than three analogous SRS sets
shown in [18], and which will be used here in later com-
parisons, but quantitatively they are significantly more uni-
form ([4]). CVT sets from the three different SRS initial
sets are shown in [18]. The different LHS and SRS initial
conditions do not have much of an impact on final CVT
uniformity, so CVT appears to be robust in this regard.

Figures 2 and 3 show Halton and Hammersley pointsets
and the corresponding CVT sets started from them. The
Halton pointset is noticably and quantitatively more uni-
form than any of the LHS sets; the Hammersley set is even
more uniform than the Halton set; and the CVT sets are
even more uniform than the Hammersley set.

Hence, CVT places samples much more uniformly in
the 2D hypercube than SRS and LHS, and even more uni-
formly than the low-discrepancy Halton and Hammersley
QMC sequences. This is true regardless of the initial con-
ditions (sample sets) that CVT starts from ([4]). In initial
investigations [4] for 2-D, 7-D, and 20-D test cases, CVT
has provided greater sampling uniformity than Halton,
Hammersley, Sobol, SRS, LHS, DHS, and IHS according
to a meaningful subset of nonflawed quantitative quality
measures. Additionally, no degradation of sampling uni-
formity has been detected in higher dimensions (i.e., for
the 20-D case).

It is therefore natural to ask whether CVT can be ap-
plied for: A) statistical sampling over arbitrary-dimension-
al spaces of input random variables to calculate various
statistics of output response behavior; B) function integra-
tion over arbitrarily shaped domains; and C) whether it can
serve as a method for generating favorable point distribu-
tions for improved response-surface accuracy.

A preliminary positive indication regarding item C) for
response surface generation is presented in [18]. There,
CVT was shown on several 2-D test problems to provide
superior point distributions for generating locally-con-
forming Moving Least Squares response surfaces. Point
distributions by CVT, SRS, LHS, and a structured sam-
pling method with deterministically uniform point place-
ment ([17]) were tried in the study.

Items A) and B) were initially evaluated in [19] for a 2-
D function sampled from a uniform joint density over a 2-
D hypercube. The mean and standard deviation of the re-
sulting distribution of function outputs were compared for
CVT, SRS, LHS, Halton and Hammersley sampling. CVT
yielded the best overall accuracy and precision for the cal-
culated statistics. Under uniform sampling, the connection
between function integration and calculation of mean out-
put response was developed, and through this connection
it was concluded that CVT should naturally be better than
the other sampling methods for function integration.

Certainly, for function integration and point placement
for response-surface generation, CVT already appears
very promising relative to other structured and unstruc-
tured sampling methods. Especially for irregular (non-hy-
percube) interpolation and integration domains, the regu-
larity of CVT sampling over the domain is a large part of
the reason why CVT is already recognized to hold great
promise for the application of 2-D and 3-D meshless finite-
element methods.

In this paper we concentrate on evaluating CVT as a
statistical sampling method. We take a further step by
comparing it against SRS, LHS, Halton, and Hammersley
for calculating several function response probabilities un-
der uniform sampling, and then for calculating other re-
sponse probabilities arising from a joint-Normal probabil-
ity density.

2. Evaluation of CVT as a Statistical
Sampling Method

2.1. 2-D Model Problem and Statistical Measures
of Response for Performance Evaluation of
Sampling Methods

Figure 4 shows an analytic multimodal function de-
scribing system response r as a function of two system in-
puts p1 and p2:

EQ 1

on the domain  and ,

where , .

A statistical problem arises if p1 and p2 are random
variables. In that case, any particular realization p1i and
p2i of the stochastic variables yields a deterministic re-
sponse ri as given by the above functional relationship. An
ensemble of responses accompanies the different realiza-
tions of p1 and p2 as they vary stochastically or randomly
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according to their individual propensities, or joint propen-
sities if the two variables are correlated. In probability the-
ory a joint probability density function defined over the in-
put parameter space, JPDF(p1,p2), is used to model the
relative likelihood of achieving an input combination
p1,p2 corresponding to the point (p1,p2) in the p1-p2 co-
ordinate plane. The JPDF function is defined for every
point in the p1-p2 parameter plane and integrates over the
plane into a value of unity.

The JPDF likelihood function for attaining various in-
put combinations maps through the response function
r(p1,p2) into a corresponding likelihood function for re-
sponse values. Operationally, the resulting response prob-
ability density function, PDF(r), can be approached closer
and closer via Monte Carlo sampling as more and more pa-
rameter sets or realizations (p1,p2)i are randomly generat-
ed from the governing input JPDF and are propagated
through the response function r(p1,p2) into response real-
izations ri. The response realizations are distributed in the
response space (i.e., along the response coordinate axis r)
with a density that, as more and more samples are added,
trends toward the exact PDF of response.

Very often, only certain statistical measures of the PDF
of response are desired or can be reasonably estimated. Re-
sponse mean, , and standard deviation, , can be esti-
mated directly from the mean and standard deviation

of the population or set {ri} of realizations. We have the
following definitions:

EQ 2

EQ 3

where N is the number of realizations or “samples” of
response.

Also often of interest is the probability of response ex-
ceeding (or not exceeding) some particular threshold value
rT. Exceedence probability is very simply estimated as the
ratio of the number of calculated response values at or
above the given threshold value, to the total number of
samples, N. As the number of response realizations in-
creases, the estimate (quotient) trends toward greater accu-
racy, i.e., toward the actual exceedence probability. This is
of course also true for the estimates and of response
mean and standard deviation.

2.2. Comparison of Response Statistics from
Various Sampling Methods

Here we compare estimates of response exceedence
probabilities as obtained from various sampling methods
we have previously introduced: CVT, SRS, LHS, and Hal-
ton and Hammersley sequences.

We start with e.g. the 100-sample pointsets in Figure 1,
which correspond to a uniform JPDF over the input param-
eter space of our model response function (Figure 4). We
map these sets of samples through our response function
EQ 1 to obtain corresponding response sets, and then cal-
culate the aformentioned statistics of these populations.

We then compare the calculated statistics of each set to
each other and to “reference values” obtained from using
three million SRS samples at parameter sets generated by
the sampling code [9]. The reference values are actually
averages of three results, each obtained from one million
samples generated from random initial seeds “X”, “Y”,
and “Z” (different from seeds 1, 2, and 3 used to generate
the 100-sample LHS sets in Figure 1).

Three “replicate” sets of one million samples each were
used in preference to one set of three million samples so
that empirical confidence intervals (CI) on the calculated
averages could be compared against their classical CI to
reaffirm or caveat them. (Recent research ([16], [20]) has
shown that for SRS, empirical CI appear to be somewhat
more accurate than classical CI.) Empirical CI are formed
by assuming the calculated statistic (response mean, stan-
dard deviation, or exceedence probability) is a random re-
alization from a Normal or nearly Normal distribution
about the exact result. Hence a T-distribution with 3 - 1 =
2 degrees of freedom can be used to get confidence inter-
vals about the small-sample average of the three replicates.
Thus, for 95% empirical CI the following formula is used:

95% confidence half-interval = EQ 4

where is the sample standard deviation (cf. EQ 3) of
the three estimates.

2.2.3. Response Exceedence Probability for rT=0.2. The
reference value for exceedence probability (EP)
corresponding to a response threshold level of rT=0.2 is

=0.870984. This value is the average of the three EPs
calculated from the three 106 SRS sets. The standard
deviation of these three estimates is =0.000257.
Empirical 95% half-CI by EQ 4 are 0.000639. When the
reference EP is calculated based on the entire population
of N=3x106 samples, the value doesn’t change from the
averaged value based on three separate 106-sample sets,
but classical CI can be computed. The classical 95% half-
CI from standard statistical formulas is somewhat smaller,
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at 0.000379. Using the larger (empirical) 95% half-CI we
can then say that at least to 95% certainty the true
probability P0.2 of response exceeding the threshold value
rT=0.2 lies within the range ±0.000639 = (0.871623,
0.870345).

Since the test sets were limited to 100 sample points,
derived probabities can only be resolved in increments of
0.01. Thus, for the rT=0.2 case, a derived result cannot be
more accurate than 0.87 or 0.88 –both of which are equally
va l i d e s t ima t e s o f the t rue p robab i l i t y,
0.870984±0.000639, which lies between the attainable
values 0.87 and 0.88. In other words, any error in an esti-
mate of 0.87 or 0.88 is due to resolution error from the lim-
ited number of samples, and not to a fault or inferiority of
the sampling method’s point placement scheme or result-
ing pattern. Hence, in judging the performance of our sam-
pling methods, in Tables 5 and 6 we take results of 0.87
and 0.88 as exact results, and quantify errors therefrom.
Accordingly, a sample-set result of e.g. 0.89 would entail
an error of +0.01 here, and a result of e.g. 0.85 would entail
an error of -0.02.

From Table 5 we can conclude to well over 95% cer-
tainty that the SRS and LHS errors are for all three trials
significantly greater than the CVT errors. This is true of in-
dividual errors, and for average error magnitude as well
(which for CVT is an order of magnitude less than that of
SRS and LHS –LHS actually being significantly worse
than SRS in this set of trials). The algebraic average of the
signed errors shows that the average bias in the LHS and
SRS results is similar, and about 50% smaller for CVT.
The standard deviation of the estimates is an order of mag-
nitude less for the CVT results than for the LHS and SRS,
with SRS significantly better than LHS according to this
metric. Thus, in these calculations of exceedence probabil-
ity, CVT shows an order of magnitude improvement over
SRS and LHS in both the error magnitude and standard de-
viation of the estimates.

Table 6 shows that the Halton error is significantly larg-
er than the Hammersley error. CVT reduces the -0.02 Hal-
ton error to zero within our ability to distinguish error here,
but does not improve the -0.01 error of the Hammersley re-
sult.

2.2.3. Response Exceedence Probability for rT=0.5. The
reference value for exceedence probability corresponding
to a response threshold level of rT=0.5 is =0.555050.
This value is the average of the three EPs calculated from
the three 106 SRS sets. The standard deviation of these
three estimates is =0.000209. Empirical 95% half-CI
by EQ 4 are 0.000519. The reference EP when calculated
based on the entire population of N=3x106 samples yields
classical 95% half-CI of 0.000562, very close to the
empirical value. Using the larger (classical) 95% half-CI

we can then say to at least 95% certainty that the true
probability P0.5 of response exceeding the threshold value
rT=0.5 lies within the range ±0.000562 = (0.555612,
0.554488).

Since the test sets were limited to 100 sample points,
for the rT=0.5 case a derived result cannot be more accu-
rate than 0.55 or 0.56 –both of which are equally valid es-
timates of the true probability, 0.555050±0.000562, which
lies between the attainable values 0.55 and 0.56. Hence, in
judging the performance of our sampling methods, in Ta-
bles 7 and 8 we take results of 0.55 and 0.56 as exact re-
sults, and quantify errors therefrom. Accordingly, a sam-
ple-set result of e.g. 0.57 would entail an error of +0.01
here, and a result of e.g. 0.53 would entail an error of -0.02.

From Table 7 we see that the average bias of the SRS
samples is an order of magnitude larger for SRS than for
LHS and CVT. In the case, LHS bias is smaller than CVT
bias by about 50%, but both are small. The standard devi-
ation of the estimates is the same order of magnitude for
SRS, LHS, and CVT, with CVT having the smallest stan-
dard deviation, then LHS, then SRS. Average error magni-
tude is also least for CVT, then for LHS, then for SRS.

Table 9 shows that for this problem the Halton error of
0.02 is actually better than the Hammersley error of -0.03.
CVT reduces both these errors to zero within our ability to
distinguish error here.

3. Closing

Though we have found in very limited testing that CVT
typically performs best for calculating means and varianc-
es (in [19]) and the various exceedence probabilities above
under a uniform JPDF, we have not yet assessed its statis-
tical performance under the much more common situation
of non-uniform input random variables. This will be the
next important test for CVT, which we plan to assess with
the remainder of this paper.
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Level 4 Level 6

Figure 1. 100-point sample sets on a 2-D unit hypercube for: A) Left Column– uniform JPDF LHS
Monte Carlo with three different initial seeds; and B) Right Column– corresponding
uniform JPDF CVT sets starting from LHS sets as initial conditions.

LHS2 pointset (from seed 2) CVT-LHS2 pointset (from LHS2)

LHS3 pointset (from seed 3) CVT-LHS3 pointset (from LHS3)

LHS1 pointset (from seed 1) CVT-LHS1 pointset (from LHS1)



Figure 2. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Halton QMC sequence;
B) Right plot– corresponding CVT set starting from the Halton set as initial
conditions.

Figure 3. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Hammersley QMC sequence;
B) Right plot– corresponding CVT set starting from the Hammersley set as initial
conditions.

Figure 4. 2-D model function for system response as a function of
input parameters p1 and p2.



Table 1. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Uniform 2D JPDF)

SRS LHS CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.85 -0.02 0.84 -0.03 0.86 -0.01

2 0.86 -0.01 0.86 -0.01 0.87 0.0

3 0.89 +0.01 0.90 +0.02 0.87 0.0

average 0.867 -0.0067 0.867 -0.0067 0.867 -0.0033

std. dev. 0.021 0.0153 0.031 0.0252 0.006 0.0058

avg. error mag. 0.0133 0.02 0.0033

Table 2. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Uniform 2D JPDF)

Halton Hammersley CVT

 error  error  error

0.85 -0.02 0.87 0.0

0.86 -0.01 0.86 -0.01

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2



Table 3. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Uniform 2D JPDF)

SRS LHS CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.56 0. 0.53 -0.02 0.55 0.

2 0.57 +0.01 0.55 0. 0.58 0.02

3 0.62 +0.06 0.57 +0.01 0.56 0.

average 0.5833 +0.023 0.550 -0.003 0.563 +0.007

std. dev. 0.0321 0.032 0.020 0.015 0.015 0.012

avg. error mag. 0.023 0.01 0.007

Table 4. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Uniform 2D JPDF)

Halton Hammersley CVT

 error  error  error

0.58 +0.02 0.56 0.

0.52 -0.03 0.56 0.

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5
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